GTC对话黄仁勋:老黄眼中的“GPU”和别人有很大差别

站长云网 2024-03-21 GeekPark极客公园 站长云网

气氛突然严肃了起来。“有媒体认为你要么是AI时代的达芬奇,要么是AI时代的奥本海默,你怎么看?”“奥本海默是造炸弹的,我们(英伟达)不干这个。”面对这个多少有点戏谑的问题,英伟达创始人、CEO黄仁勋迟疑片刻,非常认真地回答了出来。

当地时间3月19日,以堪比流行巨星的热度完成了GTC2024的开场演讲后第二天,黄仁勋接受了全球媒体采访。


黄仁勋给在场媒体重新解释了一遍“演唱会”上的要点|图片来源:极客公园

无论是宏大问题例如“AGI何时到来”、“英伟达如何看待中国市场”,或者是具体到新推出的NIM软件如何应用,这位全球市值第三公司的掌舵人,都能将问题分解并抽象成更容易理解的层次,用简单的比喻回答出来,虽然其中可能不乏“太极”的嫌疑,但至少令人难以怀疑回答者的诚恳。

两万亿的市值新高度下,老黄认为,GPU芯片市场,不是英伟达的追求——“英伟达不造芯片,英伟达造数据中心”,为此,英伟达搭建了所有:硬件、软件、服务,让客户决定怎么购买自己的数据中心。


GTC2024Keynote演讲中,老黄展示的5个要点:

新工业革命(加速计算和生成式AI)下,英伟达的新基建包括:Blackwell平台;NIMS;NEMO和NVIDIAAIFoundry;Omniverse和ISAAC机器人。|图片来源:NVIDIA

01GTC新品的中国市场计划

问:新的网络和技术计划向中国销售多少?有任何中国特定SKU的信息可以披露吗?是否为该市场做出了任何考虑或改变?

黄仁勋:我还没有向你宣布这一点,你很贪婪(哈哈),这就是全部答案。现在对于中国,我们有L20和H20芯片符合出口要求,我们正在尽最大努力为中国市场组织调配资源。

02AIFoundry的目标

问:你在主题演讲里提到AIFoudry正在许多企业起作用,这个计划的总体战略和长期目标是什么?

黄仁勋:AIFoundry的目标是构建软件。这不是指软件作为工具,任何人都有这样的软件。很久以前创建的两个最重要的软件,一个叫做Office,它让软件变得RTS(Real-TimeSoftware,实时软件)。

另一个非常重要的软件叫做cuDNN(CUDA深度神经网络库)。我们有AI所有这些不同的。未来的库是一个微服务,因为未来的库不仅仅用数学来描述,还用AI来描述。未来,它们都将变成NIMs(微服务)。

这些NIMs是超级复杂的软件,你所要做的就是来到我们的网站。你可以选择用户在那里,或者下载它、在另一个云端运行它,或者下载在你的本地计算机上运行。当运行你的工作站、你的数据中心时,这项服务将使它们非常高效,所以这是一种在环境中使用的新方式。现在,当你作为一个企业运行这些库时,我们有一个软件许可(Liscence)的授权操作系统可用,你可以以4500美元/GPU/年的价格使用这些服务。

03Blackwell定价

问:你之前说最新一代AI芯片Blackwell的定价在3万至4万美元,有更精确的信息吗?

黄仁勋:这很难说,我也只是试图让大家对我们产品的定价有一定体感,并不打算给出具体报价。

Blackwell系统的定价非常不同,因为每个人要的配置不同。如果不仅使用Blackwell,Blackwell系统通常包括NV-Link在里面,所以不同系统的定价不同。像往常一样,定价范围通常视TCO(总体拥有成本)而定。

英伟达不造芯片,英伟达造数据中心,为此我们搭建了所有任务,引入所有软件,调整它使数据中心系统尽可能地运转良好。然后,疯狂的部分来了,我们将数据中心聚合成更小的部分,允许客户根据自己的特定需求对其进行修改,这包括网络、存储、控制平面、安全和管理模块,想办法把数据中心整合到客户的系统中,最终,客户决定如何购买它,所以跟过去销售芯片不同,Blackwell的定价不是芯片的事,我们的商业模式也反映了这一点。

英伟达的机会不是GPU芯片,是数据中心,数据中心正在快速走向加速,这是每年2500亿美元的市场,并以每年20%至25%的速度增长,这主要是由于AI方面的需求。其中,英伟达会占据重要的份额,从1万亿美元升至2万亿美元,我认为是合理的。


黄仁勋:你说的GPU,和我说的GPU,脑海中想象的差距非常大|图片来源:极客公园

04SamAltman要扩张到芯片行业

问:SamAltman一直在与芯片业的人们谈论扩大AI芯片的规模。他和你谈过这个问题吗?

黄仁勋:我不知道他的意图。他认为生成式AI会变得很大,在这一点我很认同。

今天计算机产生像素的方式是从数据集中检索数据,处理数据,然后传递数据。在整个过程中,人们认为需要消耗的能源非常少,但这恰恰相反。原因是每次你触摸手机、每个提示,需要与数据集赛跑并返回。从数据集中检索数据,使用CPU收集所有必要的部分,然后以一种从推荐系统的角度看有意义的方式组合信息,然后将结果信息发送回用户,这个过程需要大量的计算。

这就像每次问我一个问题,我都需要跑回办公室检索信息,这需要大量的精力。未来,越来越多的计算将是生成的,而不是基于检索的。当然,这个生成过程必须是智能的、与上下文相关的。我相信,未来人们电脑上的几乎每一个像素、每一次交互都将通过生成过程产生,我相信Sam也这么认为。希望通过Blackwell新一代架构能为生成式AI这个领域做出重大贡献。现在大多数体验还是基于检索的,但是如果未来每个人的人机交互都是生成式的体验,我会很惊讶。这是一个巨大的机遇。

05个人大模型会是什么样子?

问:我完全同意你对未来软件的定义,我们的生活也在通过LLM发生很大变化。在基础模型方面,你认为未来会是什么样的?

黄仁勋:核心是,我们如何拥有个人的大模型?有一些方式可以做到。开始,我们认为这个过程可能需要微调(finetuning),在持续的使用过程中,持续微调。

但是,正如你所知,微调是相当耗时的。然后我们发现了提示词工程(promptengineering),发现了上下文学习(contextlearning),发现了工作环境(workingenvironment)等等。

我认为答案将是所有这些的组合。在未来,你可以通过只微调一层叫Lora的权重(weights),锁定其他部分不必微调,从而低成本地做微调,你可以做提示词共创、上下文学习、增加模型记忆,所有这些成就了你独特的大模型,可以在云端运行,也可以在你的本地电脑上运行。

06对AI芯片初创公司的看法

问:昨天在你的主题演讲后,芯片公司Groq发推文说自家芯片跑得仍然更快,你怎么看AI芯片初创公司的评论?


黄仁勋:我还没了解那么多(哈哈),不评论了。

任何以token方式做生成的模型都需要其独特的方式,因为Transformer不是任何一个模型的名称。

这些模型总体基于Transformer技术,都利用了Transformer注意力机制,但模型与模型之间存在巨大差别。有的模型用了混合专家模型(MixtureofExperts),混合模型里有的是两个专家模型,有的是四个专家模型,这些模型等待消息,以及路由分发,里面的一切步骤都不同,模型中的每一个都需要特殊优化。

此时,如果计算单元被设计成只能以特定的方式、做特定的事情,它就是一个可配置的电脑,而不是可编程配置的计算机,就无法受益于软件创新的速度和潜力。

就像CPU的奇迹不可低估一样,这么多年,CPU一直是CPU的原因,是它克服了这些年来设置在PC主板上的可配置硬件,软件工程师的才能可以通过CPU来实现。相反,如果你把它固定在芯片上,你就断了软件工程师能带给芯片的聪颖智慧。

这就是英伟达芯片能够在不同的AI模型架构(从AlexNet一直到Transformer)下,都能表现出色的原因,英伟达找到了一种方法,从一种非常专业的计算形式中受益。芯片在这里被用来促进软件,而英伟达的工作是促进发明,促进像ChatGPT的发明。

07机器人空间模拟如何利用语言模型?

问:你讲述了使用生成式AI和模拟/仿真(simulation)来大规模训练机器人,但是有很多事情我们不知道如何很好地模拟,特别是当涉及到结构性的环境,如何突破限制继续训练机器人?

黄仁勋:有多种方法可以做到这一点。首先,你可以在我们的语言模型上下文中构建你的问题或观点。

大型语言模型以不受约束和非结构化的方式运行,这同时也是它的潜力之一。它从文本中学到了很多东西,但可能不适合泛化。它们如何在空间泛化是一种“魔力”,机器人的ChatGPT时刻可能就在眼前。

为了克服这个问题,你可以指定上下文和问题,例如告诉它处在特定条件的厨房中。通过应用ChatGPT的魔力,机器人可以有效地泛化并生成对软件有意义的token。一旦你的计算机感官识别了这些token,机器人可以根据这些例子进行归纳。

08预判下一个ChatGPT时刻

问:你提到一些行业先迎来ChatGPT时刻。哪些行业会率先变化?可以分享你看到的突破,尤其让你激动人心的案例吗?

黄仁勋:有很多例子。我对Sora非常兴奋,去年在wayve上看到了同样的能力,这是关于文生视频的例子。

为了生成一个这样的视频,模型必须对物理规律有感知,比如把放在桌子上,而不是中间;走路的人是在地面上。不能违背物理规律。

另一个例子是我们用Earth-2来预测极端天气影响。这是一个关键的研究领域,因为极端天气事件会对当地社区造成毁灭性的影响。利用Earth-2,可以在3公里尺度上预测极端天气事件的影响。这是对现有方法的重大改进,现有方法需要的超级计算机要大2.5万倍。

生成新药物和蛋白质是另一个非常令人印象深刻的潜在用例。这是通过像Alphago这样的强化学习循环来实现的,它允许在不消耗纯物质的情况下探索大分子空间,这有可能彻底改变药物发现。

这些是非常有影响力的东西,机器人技术也是如此。


在3月18日的GTC开场演讲中,老黄注视着最新的Blackwell架构产品|图片来源:极客公园

09芯片出口管制如何影响英伟达

问:对芯片的出口管制,以及地缘政治,会对英伟达产生什么影响?

黄仁勋:有两件事我们必须马上去做。第一,了解所有政策,以确保其合规;第二,也要提高供应链韧性。

关于后者,我举个例子。当我们把Blackwell芯片配置成DGX处理器时,其中有60万个零件来自世界各地,很多来自中国。就像全球汽车供应链的复杂性一样,供应链的全球化很难被打破。

10和台积电的关系

问:你能谈谈与台积电的关系吗?在过去的几年里,随着不断芯片封装的复杂性,台积电如何帮助英伟达实现目标的?

黄仁勋:与台积电的合作是我们最紧密的合作之一,因为我们要做的事情非常难,而他们能做得非常好。

我们从台积电得到了计算单元,CPU、GPU裸芯片,良率很好。存储器是来自美光、海力士、三星,并且这些组装必须在台湾完成。所以,供应链并非易事,需要公司之间的协调。这些大公司与我们一起合作,也逐渐意识到,更加密切的合作是非常必要的。

我们从各家公司获取部件,然后组装,第三家公司测试,第四家公司组成系统,当然这个大系统最后是为了建成一个超级计算机,再进行测试。最终,我们建立了数据中心。想象下,所有的加工制造就是为了形成一个巨大的数据中心。整个供应链从上到下复杂度非常高,因为我们不仅仅是组装,除了芯片本身是个奇迹外,我们做成了巨大而庞杂的系统。

所以,当人们问我对GPU是什么感受时,可能一部分觉得它有点像Soc(集成芯片)而已,而我看到的是架子、线缆、交换机等等。这才是我心中GPU和软件的模型。台积电真的很重要。

11云业务的战略

问:英伟达正在向云业务转型,其他云厂商则在做自己的芯片。他们会影响你的定价策略吗?英伟达云业务的策略是什么?会向中国客户销售DGX云业务吗?

黄仁勋:英伟达与云服务提供商合作,将其硬件和软件放入他们的云中,这样做的目标是将客户带到他们的云中。

英伟达是一家计算平台公司,我们开发软件,我们有一批追随英伟达的开发者,因而,我们为使用英伟达DGX的云服务供应商(CSP)创造需求、带去客户。

12“当代达芬奇”,还是“奥本海默”?

问:你曾说AGI将在5年内到来,这个时间预测有发生变化吗?AGI的加速到来会让你感到害怕吗?有人说你是当代达芬奇(多才多艺、做出如此贡献),也有人说你是当代的奥本海默,你怎么看?

黄仁勋:奥本海默是造炸弹的,我们(英伟达)不干这个。

先具体定义AGI,这样我们才能知道什么程度才算到达AGI、什么时候到达。如果AGI意味着在大量的测试集上,数学测试、阅读测试、逻辑测试、医学考试、法律考试、GMAT、SAT等等,软件程序可以做到比大多数人类都更好,甚至比所有人都好,那么计算机在5年内可以实现AGI

责任编辑:站长云网