新型反应堆系统将二氧化碳转化为可用燃料
一种新型反应堆设计可将小型锅炉排放的二氧化碳转化为甲烷燃料,为应对气候变化提供了一种前景广阔的战略。减少锅炉等小型燃烧系统和其他工业设备的碳排放,对于实现可持续发展和碳中和的未来至关重要。锅炉普遍存在于众多行业中,用于供暖、蒸汽发电和发电等关键功能,在温室气体排放中扮演着重要角色。
锅炉的效率通常很高。因此,仅靠提高燃烧效率很难减少二氧化碳排放。因此,研究人员正在探索其他方法,以减轻锅炉排放的二氧化碳对环境的影响。为此,一个很有前景的策略是捕获这些系统排放的二氧化碳,并将其转化为有用的产品,如甲烷。
要实施这一战略,需要一种特殊类型的膜反应器,即分配器型膜反应器(DMR),它既能促进化学反应,又能分离气体。虽然DMR已在某些行业中使用,但其在将二氧化碳转化为甲烷方面的应用,尤其是在锅炉等小型系统中的应用,仍相对较少。
由日本芝浦工业大学的野村幹弘教授和波兰AGH科技大学的GrzegorzBrus教授领导的一组日本和波兰研究人员填补了这一研究空白。他们的研究成果最近发表在《二氧化碳利用期刊》上。
研究小组双管齐下,通过数值模拟和实验研究来优化反应器设计,以便将小型锅炉中的二氧化碳高效转化为甲烷。在模拟过程中,研究小组模拟了气体在不同条件下的流动和反应。这反过来又使他们能够最大限度地减少温度变化,确保在甲烷生产保持可靠的同时优化能源消耗。
研究小组还发现,与将气体导入单一位置的传统方法不同,分布式进料设计可以将气体分散到反应器中,而不是从一个地方送入。这反过来又能使二氧化碳更好地分布在整个膜中,防止任何位置过热。野村教授解释说:"与传统的填料床反应器相比,这种DMR设计帮助我们将温度增量降低了约300度。"
除了分布式进料设计,研究人员还探索了影响反应器效率的其他因素,并发现一个关键变量是混合物中的二氧化碳浓度。改变混合物中的二氧化碳含量会影响反应的效果。"当二氧化碳浓度为15%左右(与锅炉中的二氧化碳浓度相似)时,反应器生产甲烷的效果要好得多。事实上,与只有纯二氧化碳的普通反应器相比,它能多产生约1.5倍的甲烷,"野村教授强调说。
此外,研究小组还研究了反应器尺寸的影响,发现增大反应器尺寸有助于为反应提供氢气。不过,需要考虑一个折衷的问题,因为提高氢气可用性的好处需要谨慎的温度管理,以避免过热。
因此,这项研究为解决温室气体排放的主要来源问题提供了一个前景广阔的解决方案。通过利用DMR,可以成功地将低浓度二氧化碳排放转化为可用的甲烷燃料。由此获得的益处不仅限于甲烷化,还可应用于其他反应,从而使这种方法成为高效利用二氧化碳的多功能工具,甚至适用于家庭和小型工厂。
编译来源:ScitechDaily
踩一下[0]
顶一下[0]